Characteristics and dimensions of the Schneiderian membrane: a radiographic analysis using cone beam computed tomography in patients referred for dental implant surgery in the posterior maxilla

Key words: cone beam computed tomography, dental implants, mucosal thickness, posterior maxilla, Schneiderian membrane, sinus floor elevation, volume tomography

Abstract

Objectives: To determine the dimensions of the Schneiderian membrane using limited cone beam computed tomography (CBCT) in individuals referred for dental implant surgery, and to determine factors influencing the mucosal thickness.

Material and methods: The study included 143 consecutive patients referred for dental implant placement in the posterior maxilla. A total of 168 CBCT images were taken using a limited field of view of 4 × 4 cm, 6 × 6 cm, or 8 × 8 cm. Reformatted coronal CBCT slices were analyzed with regard to the thickness and characteristics of the Schneiderian membrane in nine standardized points of reference. Factors such as age, gender, or status of the remaining dentition that could influence the dimensions of the Schneiderian membrane were evaluated using univariate and multivariate linear regression models.

Results: The thickness of the Schneiderian membrane exhibited a wide range, with a minimum value of 0.16 mm and a maximum value of 34.61 mm. The highest mean values, ranging from 2.16 to 3.11 mm, were found for the mucosa located in the mid-sagittal regions of the maxillary sinus. The most frequent mucosal findings diagnosed were flat thickenings of the Schneiderian membrane (62 positive findings, 37%). For the multivariate linear regression model, only gender had a statistically significant influence on the mean overall and mid-sagittal thickness of the sinus mucosa.

Conclusion: There is great interindividual variability in the thickness of the Schneiderian membrane. Gender seems to be the most important parameter influencing mucosal thickness in asymptomatic patients. Future studies are needed to assess the therapeutic and prognostic consequences of mucosal alterations in the maxillary sinus.

Since the first description in 1998 [Mozzo et al. 1998], cone beam computed tomography (CBCT) has become a popular and important technique for diagnosis and treatment planning in dental medicine [Ziegler et al. 2002; Bremke et al. 2008]. It has already become an established diagnostic tool for some indications, such as endodontics [Loftthag-Hansen et al. 2007; Patel 2009], dental traumatology [Bornstein et al. 2009], apical surgery [Rigolome et al. 2003; Low et al. 2008; Bornstein et al. 2010], challenging periodontal bone defects [Misch et al. 2006; Kasaj & Willershausen 2007], preoperative planning of furcation surgery [Walter et al. 2009], and dental implant surgery [Guerrero et al. 2006]. Even for visualization of the paranasal sinuses, for which conventional computed tomography (CT) is considered the diagnostic method of choice [Fattépek et al. 2008], CBCT imaging is becoming more popular [Ziegler et al. 2002; Bremke et al. 2008].

The placement of endosseous dental implants has become an established and very common surgical procedure in dentistry over the past three decades. In the posterior maxilla, reduced bone height and low bone density are the most common limitations for implant placement [Jemt et al. 1995]. Sinus floor elevation (SFE) procedures have been documented as predictable surgical options to overcome this obstacle [Bornstein et al. 2008]. Radiographic findings that sometimes may pose problems for the surgeon planning an SFE procedure with or without simultaneous dental implant placement are the presence of bony septa [Naitoh et al. 2009], thickening of the Schneiderian membrane, prior
destructive maxillary sinus surgery (e.g., Caldwell-Luc operation), and manifest pathology such as acute rhinosinusitis or neoplastic processes (van den Bergh et al. 2000). There is only limited knowledge of the mean thickness and the dimensions of the Schneiderian membrane, and there are no guidelines for assessment and classification of mucosal findings in the maxillary sinus before SFE.

The objective of the present study was to analyze the thickness and the anatomic characteristics of the Schneiderian membrane using limited CBCT in patients referred for dental implant placement in the posterior maxilla. Additionally, the influence of age, gender, smoking habits, periodontal and endodontic findings, and the time period elapsed since the last tooth removal in the region of interest on the dimensions and morphology of the maxillary sinus mucosa were evaluated.

Material and methods

Patient selection

For the present study, all partially edentulous patients scheduled for limited CBCT imaging for further radiographic evaluation of a future implant insertion site in the posterior maxilla (first premolar to second molar) were consecutively enrolled. All patients had been referred by their private dentist to the Department of Oral Surgery and Stomatology at the University of Bern for implant therapy. The CBCT image taking occurred in the period between January 1, 2008 and December 31, 2008. Patients with a history of previous dental implant placement or bone grafting in the posterior maxilla, reduced sinus visibility in the CBCT scan volume (less than the region of the anterior maxillary sinus border to the second molar in the sagittal slices; floor of the nose and/or onset of the zygomatic process not visible in the coronal slices), or with evident artifacts due to movement during image taking were excluded from the present study.

At the time of the retrospective data analysis, the implant therapy planning, and in most cases, the implant surgery had already been performed.

Imaging procedure

The CBCT images were obtained with a 3D Accuitomo XYZ Slice View Tomograph (Morita, Kyoto, Japan) with a voxel size of 0.08 mm. Operating parameters were set at 5.0 to 7.0 mA and 80 kV and exposure time was 17.5 s. For all CBCT images, a limited field of view (FOV) of 4 × 4 cm, 6 × 6 cm, or 8 × 8 cm was selected. The data were reconstructed with slices at an interval of 0.5 mm.

Evaluation of the images

The CBCT images were evaluated by an experienced graduate student not directly involved in the treatment and follow-up of the patients (S. J.). For knowledge and diagnostic skills of maxillary sinus pathologies, the graduate student was instructed by two ENT specialists. For calibration and evaluation of intraexaminer reliability, 10 randomly selected cases were measured twice on two different days, resulting in a mean difference of 0.18 mm per image (range of 0–0.33 mm). For the further study, each measurement was repeated, and the mean value was calculated. When the difference between two values was ≥ 0.2 mm, a third measurement was performed (Bornstein et al. 2010). CBCT images were analyzed using a Dell 380 Precision workstation (Dell SA, Geneva, Switzerland) and a 19 in. Eizo Flexscan monitor with a resolution of 1280 × 1024 pixels (Eizo Nanao AG, Wädenswil, Switzerland). The analyses and measurements described below were performed using a specialized computer software (i-Dixel Version 1.8, Morita).

Measurements to determine the thickness of the Schneiderian membrane

The CBCT slices were first reformatted to place the posterior maxillary segment (first premolar to second molar) of the alveolar bone crest in a vertical position in the axial slices, and the palate/floor of the nose in a horizontal position in the coronal slices. Subsequently, three standardized measurements of the dimensions of the Schneiderian membrane in millimeters were performed using the coronal CBCT slice in the anterior region of the maxillary sinus in the lateral (lat), in the mid-sagittal (amid), and in the medial (amed) aspect. The selected anterior slice of the maxillary sinus floor corresponds to the region between the root tips of the maxillary premolars in a dentate patient (Fig. 1). The following anatomic landmarks in the coronal CBCT slices were selected for standardized measurements at each position (Fig. 2a–c):

1. The onset of the zygomatic process for the lateral measurement (lat).
2. The deepest point of the sinus floor in the coronal CBCT slice for the mid-sagittal measurement (amid).
3. The ipsilateral bony floor of the nose for the medial measurement (amed).

In cases where the sinus floor was located more cranial than the onset of the zygomatic process, or than the bony floor of the nose, the lateral (lat) – respectively, the medial (med) – measurements were performed at the height of the onset of the ipsilateral inferior nasal choncha. These three measurements were repeated in the middle region (Fig. 1, see marking m), corresponding to the apex of the first maxillary molar (mlat, mmid, mmmed), and in the posterior region (Fig. 1, see marking p), corresponding to the region between the apex of the second and the third maxillary molars in dentate patients (plat, pmid, pmmed). In edentulous posterior sites, distances between premolar roots were set at 7 mm, and distances between molar roots at 8 mm. Therefore, the radiographic evaluation included nine separate measurements for each maxillary sinus analyzed (Fig. 3). All measurements of the mucosal thickness were performed perpendicularly to the underlying bone, starting at the underlying bony plate and ending at the mucosal surface.
Mucosal thickening of >2 mm was classified as pathological, and was classified according to criteria adapted from Soikkonen & Ainamo (1995):

1. Flat: shallow thickening without well-defined outlines.
2. Semi-aspherical: thickening with well-defined outlines rising in an angle of >30° from the floor or the walls of the sinus.
4. Mixed flat and semi-aspherical thickenings.
5. Other mucosal thickening types or pathological findings.

The following findings of the teeth (canines, premolars, and molars including the third molar) in the region of interest were evaluated by screening the corresponding CBCT sections in all three dimensions (sagittal, coronal, and axial):

1. Status of the dentition in the posterior maxilla: single tooth gap, multiple tooth gap, distal extension situation, edentulous.
2. Presence of endodontically treated teeth (yes/no in anterior, middle, and posterior maxillary sinus regions).
3. Presence of apical lesions according to the diagnostic criteria of Low et al. (2008) in the region of interest (yes/no in anterior, middle, and posterior maxillary sinus regions): a periapical radiolucency in connection with the apical part of the root was classified as a lesion when the width of the radiolucency exceeded at least twice the width of the periodontal ligament space, and the lesion was visible in at least two image planes.
4. Presence of periodontal lesions (positive for radiographic marginal bone loss deeper than the midlevel of the respective root or involvement of furcation in molars) in the regions of interest (yes/no in anterior, middle, and posterior maxillary sinus regions).

Additional clinical and radiographic parameters assessed
The season in which the CBCT image was taken (winter, spring, summer, autumn) was recorded for further evaluation as a potential parameter influencing the thickness of the Schneiderian membrane.

The following anamnestic parameters of the included patients were recorded:
1. Age and gender.
2. Tobacco use, classified as current, former, or never smoker.
4. Weeks since last tooth/teeth removal in the examined maxillary segment.

Statistical analysis
All data were first analyzed using descriptive statistics and box plots. In addition, the 95% confidence intervals of the mean thickness measures were calculated for the different patient subgroups. The impact of potential influencing parameters on the mean values for the overall thickness (nine measurements per maxillary sinus) and mid-sagittal thickness (three values per maxillary sinus) of the Schneiderian membrane was evaluated using univariate and multivariate linear regression models. Each sinus was considered as independent because asymmetrical thickness of the Schneiderian membrane was suspected in patients. The response variable (thickness of the Schneiderian membrane) was log-transformed for further analysis to achieve normality because the original data were skewed.

All parameters with a P-value of 0.2 or less in the univariate analysis were included for further analysis in a multivariate linear regression model. The fit of the models was assessed by evaluating the residuals of the respective regression models. In addition, a robust regression was performed on the log-transformed response variable to assess whether the coefficients and standard errors would vary when more robust methods are used (Draper & Smith 1998). The significance level chosen for all statistical tests was $P \leq 0.05$. All analyses were performed using a software package (Stata 11, Stata Corp., College Station, TX, USA).

Results
During the study period, a total of 199 patients were included for potential analysis of their CBCT images with respect to the dimensions and anatomic characteristics of the basal Schneiderian membrane. In two limited CBCTs, the
analysis of the images was not possible due to movement artifacts; 20 patients had a history of dental implant placement or bone grafting in the posterior maxilla; and in 34 patients the visible area of the maxillary sinus in the FOV did not meet the inclusion criteria mentioned above. This resulted in a total of 143 patients with 168 CBCT scans included in the present study. This group comprised 67 men and 76 women with a mean age of 57.3 years \(\pm 11.67\). Of the included patients, 21 were current smokers, 15 were former smokers, and 96 reported never having used tobacco. In 11 patients, the status of tobacco use was not reported. The patients included in the study exhibited 64 single tooth gaps, 37 multiple tooth gaps, and 50 distal extension situations, and 17 patients were edentulous.

Descriptive analysis of the dimensions and characteristics of the Schneiderian membrane

There was a wide range in the thickness of the Schneiderian membrane as evaluated on the CBCT images, with a minimum value of 0.16 mm and a maximum value of 34.61 mm (Table 1). The highest mean values, ranging from 2.16 to 3.11 mm, were found for the mucosa located in the mid-sagittal regions of the maxillary sinus, whereas the mean values of the mucosal dimensions on the lateral and medial aspects of the maxillary sinus varied between 0.9 and 1.84 mm. The median values were lower for all regions analyzed, and more pronounced for the mid-sagittal measurements. For all three regions analyzed (anterior, middle, and posterior), the mid-sagittal values were statistically significantly different from the respective measurements in the lateral and medial walls of the maxillary sinus.

In the descriptive analysis of the CBCT images, 76 maxillary sinuses \(45\%\) out of a total of 168 were classified as healthy [Table 2]. The most frequent pathologies diagnosed were flat

Table 1. Analysis of the thickness (in mm) of the Schneiderian membrane using coronal slices from limited CBCT images

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Anterior</th>
<th>Middle</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>alat</td>
<td>amid</td>
<td>amed</td>
</tr>
<tr>
<td>Mean</td>
<td>0.96</td>
<td>2.47</td>
<td>1.6</td>
</tr>
<tr>
<td>Median</td>
<td>0.63</td>
<td>1.13</td>
<td>0.66</td>
</tr>
<tr>
<td>Maximum</td>
<td>21.08</td>
<td>30</td>
<td>16.5</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.16</td>
<td>0.28</td>
<td>0.18</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.69–1.22</td>
<td>1.89–3.04</td>
<td>1.2–2.01</td>
</tr>
</tbody>
</table>

Measurements for “anterior,” “middle,” and “posterior” correspond to the regions shown in Figs 2a–c and 3.

CBCT, cone beam computed tomography; CI, confidence interval.
The presence of endodontically treated teeth in the region of interest decreased from 19.64% in the anterior region to 13.69% in the middle region to 10.71% in the posterior region of the maxillary sinuses analyzed (Table 3). A similar distribution was observed for apical lesions: 19.05% were diagnosed in the anterior, 13.69% in the middle, and 9.52% in the posterior region. Periodontal lesions exhibited an inverse distribution pattern, with 4.76% of the pathologies diagnosed in anterior regions, 7.74% in middle regions, and 8.33% in posterior regions of the maxillary sinuses. The mean time elapsed since the last tooth removal in the analyzed segment as reported by the patient was 146.26 weeks (SD = 247.9).

For the univariate linear regression model, gender ($P = 0.004$) of the patients and periapical status of the teeth in the region of interest ($P = 0.003$) exhibited a statistically significant influence on the mean overall and mid-sagittal thickness of the Schneiderian membrane (Table 4). The respective mean values were generally higher for male subjects and for teeth with evident periapical pathology. No statistically significant influence was seen for age ($P = 0.174$), rhinologic disease ($P = 0.727$), tobacco use ($P = 0.411$), last tooth removal in the examined maxillary segment ($P = 0.179$), endodontic ($P = 0.312$) and periodontal status ($P = 0.106$) of the dentition in the region of interest, and the season of CBCT image taking (P-values from 0.335 to 0.663; Table 4). For the multivariate linear regression model, only gender had a statistically significant influence on the mean overall and mid-sagittal thickness of the Schneiderian membrane ($P = 0.01$ for overall mean thickness; $P = 0.015$ for mean mid-sagittal thickness; Table 5).

Discussion

More than 90% of the epithelial cells of the Schneiderian membrane are ciliated and distributed in a single, columnar, pseudostratified layer. The beat frequency of the cilia is approximately 60 kHz, thus moving mucus and debris actively...
toward the natural ostium (van den Bergh et al. 2000; Pikos 2008). Factors compromising mucous production and clearance of the mucosa can increase the risk of sinusitis development and have to be avoided. A typical example of such a risk factor in dentistry is the penetration of particulate graft material during sinus floor surgery (Pikos 2008). The mean thickness of the Schneiderian membrane was evaluated in a postmortem study with values ranging from 0.3 to 0.8 mm in 10 unfixed, fresh cadavers without signs of sinusitis (Tos & Mogensen 1979). In a similar study using 20 fresh cadavers, Pommer et al. (2009) found a mean thickness value of 0.09 ± 0.05 mm (range 0.02–0.35 mm). In a study analyzing sinus biopsies from healthy subjects, Aimetti et al. (2008) measured a mean thickness of 0.97 ± 0.16 mm. All three groups describe great interindividual variability in the thickness of the Schneiderian membrane.

Existing data on the dimensions and changes in the Schneiderian membrane based on radiographic imaging are rare in the literature. In CT and magnetic resonance imaging (MRI) studies, coronal slices are well established for evaluating the mucosal thickness in the maxillary sinus, and the measurements are always performed perpendicular to the underlying bone (Rak et al. 1991; Min et al. 1994; Peleg et al. 1999; Pruna 2003; Cagici et al. 2009). Nevertheless, the location of the measurement points utilized in these studies varies greatly. Additionally, studies apply different measurement scales and classifications from the maximum mucosal thickness in millimeters (Rak et al. 1991), to the simple description of the shape of mucosal thickening (Soikkonen & Ainamo 1995; Patel et al. 1996), and finally to the detection of changes in membrane thickness over time (Min et al. 1994; Peleg et al. 1999). Furthermore, early reports of thickness measurements revealed difficulty in visualizing normal mucoperiosteal structures in the paranasal sinuses through CT (Min et al. 1994) or MRI (Patel et al. 1996). The mucosa could be seen only at a thickness of 2 mm or above, and therefore historically 2 mm was considered a reliable threshold for pathological mucosal swelling (Cagici et al. 2009).

The results of the present study confirmed the great interindividual variability of the thickness of the Schneiderian membrane, with values ranging from 0.16 mm (minimum) to 1.41 mm (maximum). Furthermore, a discrepancy between mean and median values was evident, suggesting that some of the subjects analyzed exhibited very high mucosal thickness values (Table 1). When only interpreting the mean mucosal thickness values, the mid-sagittal findings in anterior, middle, and posterior regions have to be considered as pathological according to Cagici et al. (2009). However, the median values for all nine regions evaluated ranged from 0.52 to 1.41 mm.

When comparing mean and median values, the Schneiderian membrane was the thinnest in the lateral measurements, with slightly higher values in the median aspect, and statistically significantly higher values in the mid-sagittal aspect. It can be speculated that the mid-sagittal thickness values are increased because of the seated patient position during CBCT image taking, which could cause the accumulation of mucous secretions in the deepest aspect of the maxillary sinus. Other imaging techniques, such as MRI, CT, and sometimes CBCT, perform image taking on a prone patient. Moreover, CBCT imaging does not allow differentiation between liquids and soft tissue. Therefore, the high mean/median values for the mid-sagittal measurements could also be partially due to mucous accumulation on the Schneiderian membrane.

A high prevalence of mucosal thickening in paranasal sinuses of asymptomatic patients is reported in the literature. The analysis of 9315 panoramic radiographs in a Finnish health survey revealed maxillary mucosal thickening in 12% of the subjects, and a prevalence of mucous antral cysts of 7% (Vallo et al. 2010). Incidental paranasal mucosal changes were also evaluated in MRI scans performed for diagnosis of neurological pathologies (Cooke & Hadley 1991; Patel et al. 1996). The highest prevalence was reported for the ethmoidal sinuses, followed by the maxillary sinuses. The maxillary sinuses had a prevalence of shallow/flat mucosal thickening ranging from 23% to 31%, and a prevalence of cystic lesions ranging from 7% to 10%. In these studies, the authors did not use any threshold values for classification of pathologies, but only a description of the shape. A prospective radiographic analysis of 666 patients undergoing CT scans for indications such as head injuries or seizures reported abnormalities of one or more of the paranasal sinuses in 42.5% of the patients (Havas et al. 1988). In the present analysis, a higher prevalence of mucosal pathologies (55%) was found than in the studies mentioned above. This could be due to the use of a precise threshold value to define a pathologic Schneiderian membrane (2 mm). Nevertheless, the clinical significance of this value has to be regarded with some caution, as it remains to be addressed in future studies, how many of these findings and which type of mucosal thickening require therapy. The prevalence of cystic-shaped lesions was 7%, demonstrating good correlation with previous studies (Cooke & Hadley 1991; Patel et al. 1996; Vallo et al. 2010).

The available literature describing potential local or systemic influences on the thickness of

Table 4. Univariate analysis of potential influencing clinical and anamnestic parameters of the mean overall and mean mid-sagittal thickness (in mm) of the Schneiderian membrane

<table>
<thead>
<tr>
<th>Factor</th>
<th>Overall mean thickness</th>
<th>Mean mid-sagittal thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>T-value</td>
</tr>
<tr>
<td>Age</td>
<td>0.06</td>
<td>1.37</td>
</tr>
<tr>
<td>Gender (female vs. male)</td>
<td>-0.33</td>
<td>-2.92</td>
</tr>
<tr>
<td>Rhinologic disease</td>
<td>0.08</td>
<td>0.35</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>-0.13</td>
<td>-0.83</td>
</tr>
<tr>
<td>Time since extraction</td>
<td>0.02</td>
<td>1.35</td>
</tr>
<tr>
<td>Endodontic status</td>
<td>0.12</td>
<td>1.02</td>
</tr>
<tr>
<td>Periapical status</td>
<td>0.26</td>
<td>2.15</td>
</tr>
<tr>
<td>Periodontal status</td>
<td>0.24</td>
<td>1.62</td>
</tr>
<tr>
<td>Season of imaging*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 vs. 1</td>
<td>0.17</td>
<td>0.97</td>
</tr>
<tr>
<td>3 vs. 1</td>
<td>-0.12</td>
<td>-0.67</td>
</tr>
<tr>
<td>4 vs. 1</td>
<td>-0.07</td>
<td>-0.44</td>
</tr>
</tbody>
</table>

The response variable (thickness of the Schneiderian membrane) was log-transformed for further analysis. Bold indicates statistically significant results.

*Partial F test for all four seasons (1, winter; 2, spring; 3, summer; 4, autumn; overall mean thickness $P=0.3612$, mean mid-thickness $P=0.5087$).

Table 5. Multivariate analysis of potential influencing anamnestic and clinical parameters on the mean overall and mean mid-sagittal thickness (in mm) of the Schneiderian membrane

<table>
<thead>
<tr>
<th>Factor</th>
<th>Overall mean thickness</th>
<th>Mean mid-sagittal thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>T-value</td>
</tr>
<tr>
<td>Age</td>
<td>0.04</td>
<td>0.82</td>
</tr>
<tr>
<td>Gender (female vs. male)</td>
<td>-0.18</td>
<td>-0.21</td>
</tr>
<tr>
<td>Periapical status</td>
<td>0.2</td>
<td>1.54</td>
</tr>
<tr>
<td>Periodontal status</td>
<td>0.1</td>
<td>0.64</td>
</tr>
</tbody>
</table>

The response variable (thickness of the Schneiderian membrane) was log-transformed for further analysis. Bold indicates statistically significant results.
the Schneiderian membrane identifies many different factors. In a study using introral radiography, Engström et al. (1988) found a mean sinus floor mucosal thickness of 5.6 ± 6.1 mm before and 0.6 ± 1.6 mm after extensive periodontal therapy in the corresponding sextant for 13 patients with advanced periodontal disease. Gingival thickness and gender were the only genetically determined parameters to reliably predict sinus membrane thickness, being higher in patients with thick gingival biopsy and lower in women (Aimetti et al. 2008, Vallo et al. 2010). An analysis of 130 maxillary sinuses on CT scans revealed a statistically significantly higher prevalence of mucosal thickening in proximity to restored teeth (Connor et al. 2000). Vallo et al. (2010) found higher Schneiderian membrane thickness values in maxillary sinuses adjacent to periodontal and endodontal lesions. Furthermore, smoking and the presence of rhinologic diseases correlated with increased mucosal thickness. The month in which images were taken was reported to have an influence on pathologic findings in the maxillary sinuses, with September, October, and November having a higher prevalence of cystic lesions (Rodrigues et al. 2009, Vallo et al. 2010), and an increased prevalence of mucosal thickening during winter (Tarpe et al. 2000).

In the present study, only gender was identified as an influencing factor for maxillary sinus mucosa thickness in the multivariate regression analysis, with male subjects having higher mean values. Endodontic, periodontal, and periapical status of the dentition in the region of interest had no statistically significant influence. This could be due to the difference in the populations analyzed. To further evaluate the potential impact of dental pathologies of teeth in the posterior maxilla on the dimensions of the Schneiderian membrane, prospective cohort studies with larger samples and specific problems (periodontal, periapical/endodontic) are needed.

The most frequent surgical complication reported to occur during SFE is an accidental perforation of the Schneiderian membrane, occurring in 10–56% of the operated sinuses (Bornstein et al. 2008, Pikos 2008). Other postoperative complications include acute or chronic sinus infection, bleeding, wound dehiscence, exposure of the barrier membrane, and graft loss (Regev et al. 1995; Pikos 2006). To the best of our knowledge, the impact of the Schneiderian membrane on the success and long-term outcome of dental implant placement has not yet been evaluated in the literature. Nevertheless, a recent case series analyzing failures of SFE procedures reported that out of 13 patients included, preoperative chronic maxillary sinusitis had been present in four patients (Anavi et al. 2008). The authors therefore stated that elimination of sinusitis and other potential pathological conditions is necessary before SFE. What therapeutic significance has to be attributed to the relative high prevalence of mucosal findings (55%), and which of these need further evaluation and eventual treatment, has not been analyzed in the present study. As there are no guidelines for classification and treatment of mucosal findings in the maxillary sinuses before SFE, future prospective studies are needed. These studies should also analyze patency of the osteomeatal complex and the condition of the bony walls of the maxillary sinuses.

Because of the complex anatomical situation in the posterior maxilla, cross-sectional imaging (CT scan) has been proposed as the standard radiographic method for preoperative planning of dental implant placement (Dula et al. 2001; Harris et al. 2002). In the present study, limited CBCT was used to visualize the posterior maxilla, including the soft tissue morphology of the related maxillary sinus. Smaller FOV should always be used when possible, thus adhering to the ALARA [as low as reasonably achievable] principle in medical radiology (McCollough et al. 2009). In comparison with CT, modern CBCT devices have the advantage of administering less radiation to the patient (Cohenca et al. 2007; Suomalainen et al. 2009; Okano et al. 2009). Therefore, CBCT can be regarded as an alternative to CT for three-dimensional imaging before SFE.

References

Fatterpekar, G.M., Delman, B.N. & Som, P.M. (2008) Imaging the paranasal sinuses: where we are and where we are going. The Anatomical Record 291: 1564–1572.

